170 research outputs found

    The P2X7 Receptor: A Key Player in Immune-Mediated Bone Loss?

    Get PDF
    Inflammatory diseases are often multiorganic diseases with manifestations not related directly to the primary affected organ. They are often complicated by a generalized bone loss that subsequently leads to osteoporosis and bone fractures. The exact mechanism for the accompanying bone loss is not understood in full detail, but factors such as glucocorticoid treatment, immobilization, malnutrition, and insufficient intake of vitamin D play a role. However, it has become evident that the inflammatory process itself is involved and the resulting bone loss is termed immune-mediated bone loss. It stems from an increase in bone resorption and the pro-inflammatory cytokines tumor necrosis factor alpha and interleukin 1 beta and has been shown to not only mediate the inflammatory response but also to strongly stimulate bone degradation. The purinergic P2X7 receptor is central in the processing of these two cytokines and in the initiation of the inflammatory response, and it is a key molecule in the regulation of both bone formation and bone resorption. The aim of this review is therefore to provide evidence-based novel hypotheses of the role of ATP-mediated purinergic signalling via the P2X7 receptor in immune-mediated bone loss and -osteoporosis

    Clinical and biochemical outcomes of cinacalcet treatment of familial hypocalciuric hypercalcemia: a case series

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Familial hypocalciuric hypercalcemia is a rare benign autosomal-dominant genetic disease with high penetrance. In most cases, patients with familial hypocalciuric hypercalcemia experience unspecific physical discomfort or asymptomatic disease. These patients are typically characterized by mild to moderately increased blood ionized calcium and a normal to slightly elevated serum parathyroid hormone.</p> <p>Case presentation</p> <p>Four female patients with familial hypocalciuric hypercalcemia with inactivating mutations in the <it>CaSR </it>gene were included in the treatment study. Three patients were related: two were siblings and one was the daughter of one of these. The ages of the related patients were 51 years, 57 years and 35 years. All three patients were carriers of the same mutation. The fourth patient, unrelated to the others, was 53 years old, and a carrier of a novel and previously unknown mutation leading to familial hypocalciuric hypercalcemia. All four patients were Caucasians of Danish nationality. Biochemically, all patients had elevated blood ionized calcium, serum parathyroid hormone, serum magnesium and total serum calcium, except one, whose serum parathyroid hormone was within the normal range prior to treatment. All patients were treated with cinacalcet in a dosage of 30 mg to 60 mg per day.</p> <p>Conclusion</p> <p>Three months after the initiation of cinacalcet treatment, all our patients experiencing clinical signs of hypercalcemia had improved in self -reported well-being and in biochemical parameters. None of our patients suffered adverse events to cinacalcet treatment. Biochemical markers of calcium homeostasis were improved and remained stable during the observation period of 12 months (two patients), 24 and 36 months, in both the symptomatic and the asymptomatic patients.</p

    The role of the P2X7 receptor on bone loss in a mouse model of inflammation-mediated osteoporosis

    Get PDF
    In inflammatory autoimmune diseases, bone loss is frequent. In most cases, secondary osteoporosis is caused by treatment with systemic glucocorticoid. However, the pathogenesis behind the bone loss is presumed multifactorial. We aimed to elucidate the role of the P2X7 receptor on bone mineral density (BMD), microarchitecture, and bone strength in a standardized mouse model of inflammation-mediated osteoporosis (IMO). In total 146 mice completed our protocol, 70 wild type (WT) mice and 76 P2X7−/− (knockout, KO). BMD at the femur and spine decreased significantly from baseline to day 20 in the WT IMO mice (p < 0.01). In the WT vehicle, KO vehicle and KO IMO, no significant BMD changes were found. Bone strength showed a lower mid-shaft max strength (p = 0.038) and also a non-significant trend towards lower strength at the femoral neck of the WT IMO group. Trabecular bone volume fraction (BV/TV) and connectivity density (CD) after 20 days were significantly decreased in the WT IMO group (p = 0.001). In contrast, the WT vehicle and KO vehicle, BV/TV and CD did no change at 20 days. Cortical bone revealed no significant microarchitectural changes after 20 days in the WT IMO group, whereas the total cortical area increased significantly in WT vehicle and KO IMO after 20 days (5.2% and 8.8%, respectively). In conclusion, the P2X7 receptor KO mice did not respond to inflammation with loss of BMD whereas the WT mice had a significant loss of BMD, bone strength and trabecular microarchitecture, demonstrating a role for the P2X7 receptor in inflammatory bone loss

    Gut bacteria and necrotizing enterocolitis: cause or effect?

    Get PDF
    Development of necrotising enterocolitis (NEC) is considered to be dependent on the bacterial colonisation of the gut. With little concordance between published data and a recent study failing to detect a common strain in infants with NEC, more questions than answers are arising about our understanding of this complex disease
    corecore